Treść zadania
Autor: ~Dream3r Dodano: 8.9.2015 (20:34)
oblicz objętość bryły ograniczonej powierzchnią z=9-x^2-y^2 oraz płaszczyzną x0y
Zadanie jest zamknięte. Autor zadania wybrał już najlepsze rozwiązanie lub straciło ono ważność.
Rozwiązania
Podobne zadania
|
|
2 rozwiązania | autor: hrr 21.4.2010 (20:39) |
|
|
2 rozwiązania | autor: bombel 28.4.2010 (15:29) |
|
|
1 rozwiązanie | autor: Sobczyk15 11.9.2010 (16:00) |
|
|
2 rozwiązania | autor: magda-luniewska 12.10.2010 (15:40) |
|
|
2 rozwiązania | autor: muzyka11 26.10.2010 (12:55) |
Podobne materiały
Przydatność 65% Oblicze Ojczyzny
(praca z 1 klasy gima) słowa w wierszu "*** (oblicze ojczyzny)" Tadeusza Różewicza "na początku ojczyzna jest blisko, na wyciągnięcie ręki" oznaczają, że gdy jesteśmy jeszcze mali ojczyzna to rodzice, koledzy i koleżanki, to nasz dom, nasze podwórko. ważniejsze jest wtedy dla nas to, że koleżance zaginął kot, a nie że wielu ludzi nie ma pracy i nie ma za co wyżywić...
Przydatność 75% Inżynierai powierzchni
POWIERZCHNIA CIAŁA STAŁEGO np. narzędzi, maszyny, elementu konstrukcyjnego jest obiektem oddziaływania (świadomego) w celu nadania odpowiednich własności fiz. i chem./ Obrazem rzeczywistej budowy ciała stałego jest zbiór nieciągłości w skali makro lub mikro, składający się ze szczelin, porowatości, nieregularnej struktury, obecności ciał stałych. Powierzchnia ciała...
Przydatność 55% wiersz Oblicze ojczyzny
Czytając wiersz Tadeusz Różewicza pt.Oblicze ojczyzny odnoszę wrażenie,iż poeta miał szczęśliwe dzieciństwo,chociaż lata w których przyszło mu dorastać nie należały do spokojnych.Wojna i okupacja nie zatarły jednak beztroskich i pełnych ciepłych barw wspomnień poety. Kiedy jest się dzieckiem,całym światem są najbliżsi: mama,tata i...
Przydatność 65% Drugie oblicze opalania
Praca w załączniku
Przydatność 85% Oblicz masę cząsteczkową kwasu siarkowodorowego.
Wzór kwasu siarkowodorowego jest taki: H2S więc trzeba pomnożyć dwa razy masę atomową wodory i dodać masę siarki 2*1u+ 32u = 2u + 32u = 34u Odp. Masa cząsteczkowa H2S wynosi 34u.
0 odpowiada - 0 ogląda - 1 rozwiązań
0 0
antekL1 14.9.2015 (09:08)
Dzielimy bryłę na plastry równoległe do płaszczyzny XoY.
Każdy plaster ma powierzchnię P = pi * r^2 gdzie r^2 = 9 - z.
(ponieważ promień plastra spełnia warunek: r^2 = x^2 - y^2)
Element objętości (jeden plaster) to
dV = P * dz = pi * (9 - z) * dz. Całkujemy po "z" od 0 do 9
V = pi * całka [ (9 - z) dz ] w granicach od 0 do 9
V = pi * (9z - z^2 / 2 ) w granicach od 0 do 9
V = (81 / 2) * pi
Dodawanie komentarzy zablokowane - Zgłoś nadużycie